Quadratic APN Polynomials in Few Terms in Small Dimensions

Bo Sun

University of Bergen, Norway

The $2^{\text {nd }}$ International Workshop on Boolean Functions and their Applications
July 7, 2017

Outline

(1) General Background

Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
(2) Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Outline

General

Backorou

Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks Nonliearity Differential Uniformity
(1) General Background

Cryptosystems and S-boxes

Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
2 Equivalences between Vectorial Boolean Functions
Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
3 Experiment
Construction of Functions
Procedures
Results and Conclusions

S-boxes

Any S-box substitutes m bits of value from one finite field to other n bits of value from the other finite field, and both sets' characteristic are 2.
S-boxes can be implemented as lookup tables.

Example of lookup table:

		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0	63	7 c	77	7b	f2	6b	$6 \pm$	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9 c	a 4	72	c0
	2	b7	fd	93	26	36	3 f	£7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1 a	1b	6 e	5a	a0	52	3b	d6	b3	29	e3	$2 f$	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4 c	58	cf
	6	do	ef	aa	fb	43	4 d	33	85	45	f9	02	7 f	50	3c	9 f	a8
	7	51	a3	40	8 f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
x 8	8	cd	0 c	13	ec	54	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4 f	dc	22	2a	90	88	46	ee	b8	14	de	5e	Ob	db
	a	e0	32	3a	0a	49	06	24	5 c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6 c	56	£4	ea	65	$7 a$	ae	08
	c	ba	78	25	$2 e$	1c	a 6	b4	c6	e8	dd	74	1 f	4b	bd	8b	8a
	d	70	3 e	b5	66	48	03	£6	0e	61	35	57	b9	86	c1	1d	9 e
	e	el	f8	98	11	69	d9	8 e	94	9b	1 e	87	e9	ce	55	28	df
	f	8 c	a1	89	Od	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Why S-boxes are Critical for Block Ciphers?

Claude E. Shannon (1916-2001)

- Two Properties that a good cryptosystem should have: Confusion and Diffusion
- S-boxes are important because:
- They are the only nonlinear component in block cipher;
- They provide confusion to symmetric block cipher;
- There is strong connection between properties of S-boxes and resistance to many cryptographic attacks.

Outline

General
(1) General Background

Cryptosystems and S-boxes

Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
(2) Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Vectorial Boolean Functions and Attacks

For n and m positive integers Boolean functions:

$$
f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}
$$

Vectorial Boolean functions: $\quad F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

- Linear attacks - Nonlinearity
- Differential attacks - Differential Uniformity
- ...

Outline

General Backgrou
Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
(1) General Background

Cryptosystems and S-boxes

Vectorial Boolean Functions and Attacks

Nonliearity

Differential Uniformity

(2) Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Nonlinearity of Vectorial Boolean Functions

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$
Nonlinearity of Vectorial Boolean function: Minimum Hamming distance between all nonzero linear combinations of the boolean functions over \mathbb{F}_{2}^{n} and component functions of F.

Resistance to Linear Attacks

High nonlinearity $N(F)$ is necessary to resist linear attacks.

- Universal upper bound: $N(F) \leq 2^{n-1}-2^{\frac{n}{2}-1}$;
- F is bent if $N(F)=2^{n-1}-2^{\frac{n}{2}-1}$;
- Bent functions are optimal against linear attacks;
- Bent functions exist iff: n is even and $m \leq n / 2$;
- When $n=m, \mathrm{n}$ is odd, the upper bound is :

$$
N(F) \leq 2^{n-1}-2^{\frac{n-1}{2}} ;
$$

- F is Almost Bent(AB) if $N(F)=2^{n-1}-2^{\frac{n-1}{2}}, n=m$ and n is odd;
- When $\mathrm{n}=\mathrm{m}, \mathrm{n}$ is even, it was conjectured that upper bound is: $N(F) \leq 2^{n-1}-2^{\frac{n}{2}}$.

Outline

General
(1) General Background

Cryptosystems and S-boxes

Vectorial Boolean Functions and Attacks
Nonliearity

Differential Uniformity

2 Equivalences between Vectorial Boolean Functions
Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Differential Uniformity of Vectorial Boolean Functions

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is differentially δ-uniform if the equations:

$$
F(x+a)-F(x)=b, \quad \forall a \in \mathbb{F}_{2}^{\eta} \backslash\{0\}, \quad \forall b \in \mathbb{F}_{2}^{m},
$$

have at most δ solutions.

Resistance to Differential Attacks

Low differential uniformity is necessary.
$F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{m}}$

- F is Perfect Nonlinear(PN) function if it is $2^{(n-m)}$-uniform;
- PN is optimal against differential attack;
- F is bent iff it is PN ;
- PN is the highest nonlinearity and lowest uniformity
- When $n=m, F$ is Almost Perfect Nonlinear(APN) function if it is 2-uniform;
- Every AB function is APN function. The converse is not true.

Optimal Functions on Uniformity and Linearity

Table 1. Optimal Functions on Uniformity and Linearity from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$

Conditions	Functions' Name with Lowest Uniformity	Uniformity	Functions' Name with Highest Nonlinearity	Nonlinearity		
$m \leqslant n / 2$	PN (or bent)	2^{n-m}	bent (or PN)	$2^{n-1}-2^{\frac{n}{2}-1}$		
$n / 2<m<n$	-	$>2^{n-m}$	-	$\leqslant 2^{n-1}-\frac{1}{2}\left(3 \cdot 2^{n}-2-\right.$ $\left.\frac{2\left(2^{n}-1\right)\left(2^{n-1}-1\right)}{\left(2^{m}-1\right)}\right)^{1 / 2}$		
$m=n, n$ is odd	APN	2	AB (or maximal nonlinear)	$2^{n-1}-2^{\frac{n-1}{2}}$		
$m=n, n$ is even				maximal nonlinear		(Conjectured as highest)
:---:						

Outline

(1) General Background

Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
(2) Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Three Kinds of Equivalences

Equivalent relation which has invariant differential uniformity and nonlinearity, APN-ness:

- Affine Equivalence
- Extended Affine Equivalence(EA-equivalence)
- Carlet-Charpin-Zinoviev equivalence(CCZ-equivalence)

Outline

(1) General Background

Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
(2) Equivalences between Vectorial Boolean Functions Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

APN Power Functions

Table 2. Known families of APN power functions x^{d} on $\mathbb{F}_{2^{n}}$

Functions	Exponents d	Conditions
Gold	$2^{i}+1$	$\operatorname{gcd}(i, n)=1,1 \leq i<n / 2$
Kasami	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1,2 \leq i<n / 2$
Welch	$2^{m}+3$	$n=2 m+1$
Niho	$2^{m}+2^{\frac{m}{2}}-1, m$ even $2^{m}+2^{\frac{3 m+1}{2}}-1, m$ odd	$n=2 m+1$
Inverse	$2^{n-1}-1$	$n=2 m+1$
Dobbertin	$2^{4 m}+2^{3 m}+2^{2 m}+2^{m}-1$	$n=5 m$

Conjecture: Up to CCZ-equivalence, the list is complete.

Quadratic APN Polynomials (I)

Table 3. Known families of quadratic APN polynomials CCZ-inequivalent to power functions on $\mathbb{F}_{2^{n}}$

\(\left.$$
\begin{array}{|c|c|c|}\hline N^{\circ} & \text { Functions } & \text { Conditions } \\
\hline \hline 1-2 & x^{2^{s}+1}+\alpha^{2^{k}-1} x^{2^{i k}+2^{m k+s}} & \begin{array}{c}n=p k, \operatorname{gcd}(k, p)=\operatorname{gcd}(s, p k)=1, \\
p \in\{3,4\}, i=s k \bmod p, m=p-i, \\
\\
\hline\end{array}
$$

\hline 3 \& x^{2^{2 i}+2^{i}}+b x^{q+1}+c x^{q\left(2^{2 i}+2^{i}\right)} \& n \geq 12, \alpha primitive in \mathbb{F}_{2^{n}}\end{array}\right]\)| $q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1$, |
| :---: |
| |

Quadratic APN Polynomials (II)

Table 3. Continued

N°	Functions	Conditions
5	$x^{3}+a^{-1} \operatorname{tr}_{1}^{n}\left(a^{3} x^{9}\right)$	$a \neq 0$
6	$x^{3}+a^{-1} \operatorname{tr}_{3}^{n}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$
7	$x^{3}+a^{-1} \operatorname{tr}_{3}^{n}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$
8-10	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}+} \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \end{gathered}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ v, w \in \mathbb{F}_{2^{k}}, v w \neq 1, \\ 3 \mid(k+s), u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$
11	$\begin{gathered} \alpha x^{2^{s}+1}+\alpha^{2^{k}} x^{2^{k+s}+2^{k}}+ \\ \beta x^{2^{k}+1}+\sum_{i=1}^{k-1} \gamma_{i} x^{2^{k+i}+2^{i}} \end{gathered}$	$\begin{gathered} \hline n=2 k, \operatorname{gcd}(s, k)=1, s, k \text { odd, }, \\ \beta \notin \mathbb{F}_{2^{k}}, \gamma_{i} \in \mathbb{F}_{2^{k}}, \\ \alpha \text { not a cube } \end{gathered}$

CCZ-inequivalent APN functions (I)

Table 4. CCZ-inequivalent APN functions on $\mathbb{F}_{2^{n}}$ from known APN families $(6 \leq n \leq 11)$ [Budaghyan, Helleseth, Li, Sun 2017]

n	N°	Functions	Families from Tables 1-2	Relation to [*]
6	6.1	x^{3}	Gold	Table 5: $N^{\circ} 1.1$
	6.2	$x^{6}+x^{9}+a^{7} x^{48}$	$N^{\circ} 3$	$5: N^{\circ} 1.2$
	6.3	$a x^{3}+a^{4} x^{24}+x^{17}$	$N^{\circ} 8-10$	$5: N^{\circ} 2.3$
	7.1	x^{3}	Gold	Table $7: N^{\circ} 1.1$
	7.2	x^{5}	Gold	$7: N^{\circ} 3.1$
	7.3	x^{9}	Gold	$7: N^{\circ} 4.1$
	7.4	x^{13}	Kasami	$7: N^{\circ} 5.1$
	7.5	x^{57}	Kasami	$7: N^{\circ} 6.1$
	7.6	x^{63}	Inverse	$7: N^{\circ} 7.1$
	7.7	$x^{3}+\operatorname{tr}_{1}^{7}\left(x^{9}\right)$	$N^{\circ} 5$	$7: N^{\circ} 1.2$
8	x^{3}	Gold	Table $9: N^{\circ} 1.1$	
	8.1	x^{9}	Gold	$9: N^{\circ} 1.2$
	8.2	x^{57}	Kasami	$9: N^{\circ} 7.1$
	8.3	$x^{3}+x^{17}+a^{48} x^{18}+a^{3} x^{33}+a x^{34}+x^{48}$	$N^{\circ} 4$	$9: N^{\circ} 2.1$
	8.5	$x^{3}+\operatorname{tr}_{1}^{8}\left(x^{9}\right)$	$N^{\circ} 5$	$9: N^{\circ} 1.3$
	8.6	$x^{3}+a^{-1} \operatorname{tr}_{1}^{8}\left(a^{3} x^{9}\right)$	$N^{\circ} 5$	$9: N^{\circ} 1.5$

a: primitive root of $\mathbb{F}_{2^{n}}$;
[*]: Edel, Y., Pott, A.:"A New Almost Perfect Nonlinear Function Which Is Not Quadratic".

CCZ-inequivalent APN functions (II)

Table 4. Continued

n	N°	Functions	Families from Tables 1-2
9	9.1	x^{3}	Gold
	9.2	x^{5}	Gold
	9.3	x^{17}	Gold
	9.4	x^{13}	Kasami
	9.5	x^{241}	Kasami
	9.6	x^{19}	Welch
	9.7	x^{255}	Inverse
	9.8	$x^{3}+\operatorname{tr}_{1}^{9}\left(x^{9}\right)$	$N^{\circ} 5$
	9.9	$x^{3}+\operatorname{tr}_{3}^{9}\left(x^{9}+x^{18}\right)$	$N^{\circ} 6$
	9.10	$x^{3}+\operatorname{tr}_{3}^{9}\left(x^{18}+x^{36}\right)$	$N^{\circ} 7$
10	10.1	x^{3}	Gold
	10.2	x^{9}	Gold
	10.3	x^{57}	Kasami
	10.4	x^{339}	Dobbertin
	10.5	$x^{6}+x^{33}+a^{31} x^{192}$	$N^{\circ} 3$
	10.6	$x^{72}+x^{33}+a^{31} x^{258}$	$N^{\circ} 3$
	10.7	$x^{3}+\operatorname{tr}_{1}^{10}\left(x^{9}\right)$	$N^{\circ} 5$
	10.8	$x^{3}+a^{-1} \operatorname{tr}_{1}^{10}\left(a^{3} x^{9}\right)$	$N^{\circ} 5$

CCZ-inequivalent APN functions (III)

n	N°	Functions	Families from Tables 1-2
11	11.1	x^{3}	Gold
	11.2	x^{5}	Gold
	11.3	x^{9}	Gold
	11.4	x^{17}	Gold
	11.5	x^{33}	Gold
	11.6	x^{13}	Kasami
	11.7	x^{57}	Kasami
	11.8	x^{241}	Kasami
	11.9	x^{993}	Kasami
	11.10	x^{35}	Welch
	11.11	x^{287}	Niho
	11.12	x^{1023}	Inverse
	11.13	$x^{3}+\operatorname{tr}_{1}^{11}\left(x^{9}\right)$	$N^{\circ} 5$

Outline

(1) General Background

```
Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
```

(2) Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
3 Experiment
Construction of Functions
Procedures
Results and Conclusions

Classification of APN Functions for Small n

Completed

- $n \leqslant 5$: only power APN functions [Brinkmann,Leander 2009]
- $n=6$, quadratic APN functions (13 classes).

Open

- Many unclassified quadratic APN polynomials for $6<n \leqslant 12$ [Dillon et all 2006, Edel and Pott 2009; Yu et all 2013].
- One known example of quadratic APN function (with $\mathrm{n}=6$) with non-Gold like nonlinearity [Dillon et al 2006].
- One known example of APN polynomial CCZ-ineq. to quadratics and to power functions ($\mathrm{n}=6$) [Leander et al 2008; Edel and Pott 2009].
- One known example of APN permutations for n even (with $\mathrm{n}=$ 6, CCZ-eq. to quadratics!) [Dillon et al 2009].

Outline

Bo Sun

General Backgrou
Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks Nonliearity Differential Uniformity

Equivalences
between
Vectorial Boolean Functions
(1) General Background

Cryptosystems and S-boxes
 Vectorial Boolean Functions and Attacks
 Nonliearity
 Differential Uniformity

2. Equivalences between Vectorial Boolean Functions

Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Trinomials

Quadratic Trinomial Functions

$F=x^{2^{i j}+1}+x^{2^{i}\left(2^{i}+1\right)}+x^{2^{2}\left(2^{i_{3}}+1\right)}$, on $\mathbb{F}_{2^{n}}$ to itself. n is from 6 to 11 .

Conditions for efficiency:

- if n is even: $i_{1} \leqslant i_{2}, i_{3} \leqslant \frac{n}{2}$; if n is odd: $i_{1} \leqslant i_{2}, i_{3} \leqslant \frac{n-1}{2}$;
- $0 \leqslant j_{2}, j_{3} \leqslant n-1$;
- $2^{i_{1}}+1<2^{j_{2}}\left(2^{i_{2}}+1\right) \bmod \left(2^{n}-1\right)<2^{j_{3}}\left(2^{i_{3}}+1\right) \bmod$ $\left(2^{n}-1\right)$;

Quadrinomials, Pentanomials, Hexanomials

With similar conditions as trinomial, on $\mathbb{F}_{2^{n}}$ to itself, $6 \leqslant n \leqslant 11$:
Quadratic Quadrinomials
$F=x^{2^{i_{1}}+1}+x^{2 i_{2}\left(2^{i_{2}}+1\right)}+x^{2 i_{3}\left(2_{3}+1\right)}+x^{2_{4}\left(2_{4}+1\right)}$;
Quadratic Pentanomials
$F=x^{2^{i}+1}+x^{2^{i}\left(2^{i}+1\right)}+x^{2_{3}\left(2^{i}+1\right)}+x^{2 i^{i}\left(2_{4}^{i}+1\right)}+x^{2 j_{5}\left(2^{i}+1\right)} ;$
Quadratic Hexanomials

$$
\begin{aligned}
& F= \\
& x^{2^{i_{1}}+1}+x^{2^{i_{2}}\left(2^{i_{2}}+1\right)}+x^{2^{j_{3}}\left(2^{i_{3}}+1\right)}+x^{2^{j_{4}}\left(2^{i_{4}}+1\right)}+x^{\left.2^{j_{5}\left(2^{i_{5}}\right.}+1\right)}+x^{2_{6}\left(2^{i_{6}}+1\right)} .
\end{aligned}
$$

Outline

Bo Sun

General
(1) General Background

Cryptosystems and S-boxes
Vectorial Boolean Functions and Attacks
Nonliearity
Differential Uniformity
2 Equivalences between Vectorial Boolean Functions
Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions

Procedures

Results and Conclusions

Procedures, $n=6,7,8$

Procedures, $n=9,10,11$

Outline

Bo Sun

General
(1) General Background

Cryptosystems and S-boxes
 Vectorial Boolean Functions and Attacks
 Nonliearity
 Differential Uniformity

2 Equivalences between Vectorial Boolean Functions
Three Equivalences
Infinite Families of APN Functions
Classification of APN Functions for Small n
(3) Experiment

Construction of Functions
Procedures
Results and Conclusions

Result (I)

Table 5. A number of APN polynomials (up to CCZ-equivalence) which are not CCZ-equivalent to power functions.

n	Number of Terms	Number of Polynomials
6	$3-6$	-
	3	2
7	4	6
	5	10
	6	12
8	3	2
	4	-
	5	4
9,10	6	3
	$3-6$	-
11	3	-
	4	-
	5	5

Result (II)

Table 6. A number of APN polynomials (up to CCZ-equivalence) which are not CCZ-equivalent to APN polynomials in fewer terms with coefficients in \mathbb{F}_{2}.

n	Number of Terms	Number of Polynomials
6	3-6	-
7	3	2
	4	5
	5	4
	6	1
8	3	2
	4	-
	5	2
	6	1
9, 10	3-6	-
11	3	-
	4	-
	5	5
	6	-

5 New APN Polynomials on $\mathbb{F}_{2^{11}}$

Table 7. New 5 APN polynomials (up to CCZ-equivalence) on $\mathbb{F}_{2^{11}}$.
Classes NO. \quad Polynomials

1	$x^{12}+x^{10}+x^{9}+x^{5}+x^{3}$ $x^{1536}+x^{1026}+x^{514}+x^{513}+x^{3}$
2	$x^{258}+x^{257}+x^{18}+x^{17}+x^{3}$
3	$x^{96}+x^{66}+x^{34}+x^{33}+x^{3}$ $x^{192}+x^{130}+x^{129}+x^{65}+x^{3}$
4	$x^{80}+x^{68}+x^{65}+x^{17}+x^{5}$ $x^{640}+x^{516}+x^{132}+x^{129}+x^{5}$
5	$x^{260}+x^{257}+x^{36}+x^{33}+x^{5}$

Quadratic APN
Polynomials in
Few Terms in Small
Dimensions
Bo Sun

General Backgrou
Cryptosystems and S-boxes
Vectorial Boolean
Functions and
Allacks
Nonliearity
Differential
Uniformity
Equivalences
Thank you!
between
Vectorial
Boolean
Functions
Three Equivalences
Infinite Families of
APN Functions
Classification of APN
Functions for Small n
Experiment
Construction of
Functions
Procedures
Results and

